
Migrating GIS Big Data Computing from Hadoop to Spark: An Exemplary Study
Using Twitter

Zhibo Sun∗, Hong Zhang∗, Zixia Liu∗, Chen Xu†, and Liqiang Wang∗
∗Department of Computer Science, University of Central Florida, USA

†Department of Geography, University of Wyoming, USA
Email: {ericszb1987,kevinzhanghong,zxliuleo,carlxu2008,lwangcs}@gmail.com

Abstract—Recent research has demonstrated that social
media could provide valuable spatio-temporal data about users
activities. However, information extraction and computation
from big amount of data pose various challenges. To effectively
process massive datasets, several platforms have been devel-
oped. Our previous study [20] explored Hadoop-based cloud
computing for processing big amount of social media data [9]
to study geographic distributions of social media users.

In this paper, we investigate an emerging system named
Spark and present a timely pilot experience on geospatial
big data research. In our study, Spark has been utilized
to perform some classic geospatial analyses like K-Nearest
Neighbors (KNN), geographic mean and median points, and
the distribution of the median points. Our design is tested on an
Amazon EC2 cluster. An exemplary study using 60GB, 120GB
and 180GB Twitter data has demonstrated the performance
achievements by migrating computing tasks from Hadoop to
Spark. In our experiments, the Spark-based solution can be
up to 2.3x faster than the Hadoop-based solution due to its
in-memory processing and coarse-grained resource allocation
strategy. In the paper, we also discuss optimization strategies
on using Spark for different geospatial computing tasks.

Keywords-social media, GIS, Spark, Hadoop, KNN, centro-
graphic analysis.;

I. INTRODUCTION

Social media data increasingly attract research interests

because they become proxy of peoples activities. By extract-

ing locational and temporal information from social media

data, trajectories of social media users daily lives can be

plotted. Twitter is one of the most popular social media,

which has more than 500 million users (302 million active

users) around the world, who are generating hundreds of

gigabyte (GB) text data per day [3, 9]. Hence, extracting

and analyzing information from such big amount of data

pose various challenges. In our previous study [20], we

designed a Hadoop and Hbase based system, named Dart,

to manage the massive data and process geospatial big

data computing, which shows Hadoop-based solution has

a significant performance improvement [7]. However the

design of the Hadoop-based solution leaves ample room for

further performance improvement, such as simplifying the

two stages of Map and Reduce and replacing hard drive-

based computation with in-memory processing. In this paper,

we migrate our aforementioned Hadoop solution to a new

platform based on an emerging big data system called Spark

[2]. Our experimental results show that the Spark-based

solution is up to 2.3x faster than our previous Hadoop-based

solution.

Apache Hadoop is a reliable, scalable, and efficient cloud

computing framework allowing for distributed processing of

large datasets using Map-Reduce programming model [1].

However, it is a kind of disk-based computing framework,

which writes all intermediate data to disk between Map tasks

and Reduce tasks. In fact, even within a Map task, it also

writes huge amount of intermediate data to disk repeatedly

[1]. Since many applications in GIS involve lots of process-

ing modules [22], writing too much intermediate data to disk

will degrade the overall performance. Furthermore, releasing

the container, applying for and initializing new containers

also take a long time. Hence, after analyzing these features,

we believe that another emerging technology, Spark, could

be a better solution.

Apache Spark is a fast, reliable and distributed in-memory

large-scale data processing framework. It takes advantage

of the Resilient Distributed Dataset (RDD), which allows

transparently storing data in memory and persisting it to

disk only if it is needed [2, 18]. Hence it can reduce

a huge number of disk writes and reads to outperform

the Hadoop platform. Because Spark maintains status of

assigned resources until a job is completed, Spark reduces

time consumption in resource preparation and collection.

Moreover, Hadoop is based on the Map-Reduce paradigm.

For complex geospatial computations, a multi-pass Map-

Reduce Chain, which consists of several Map-Reduce jobs,

is commonly required. In contrast, multi-pass in Spark is

easier to be deployed and it can reduce the number of

writes and reads to disks. In another word, the more passes

a computing task needs, the more significant differences

can be observed between Spark-based and Hadoop-based

systems, especially when the intermediate outputs between

the passes are large. Furthermore, Spark is much better at

handling iterative or interactive computations [18, 19], which

makes Spark ideal for geospatial computations, because

these kinds of tasks are common in GIS applications.

In our experiment, we store our data directly in Hadoop

Distributed File System (HDFS), which is a Java-based open

2016 IEEE 9th International Conference on Cloud Computing

2159-6190/16 $31.00 © 2016 IEEE

DOI 10.1109/CLOUD.2016.52

351

source and distributed file system designed to run on com-

modity hardware with low cost and high bandwidth [1, 21],

as our file system. YARN, which has been characterized

as a large-scale, distributed operating system, managing

and coordinating all resources in the cluster for a big data

application, is used to manage our cluster resource.

We conduct two studies in our experiments. In the first

study, we compute KNN and geographic mean points using

60, 120 and 180 GB raw Twitter datasets. In the second

study, geographic median points and their distributions of

active users tweets are calculated. These centrographic anal-

yses are popular measurements in geography [14] and have

been used for illustrating social media users awareness about

geographic places [16].

In our experiments, the Spark-based solution always out-

performs the Hadoop-based by 50.17% while performing

median point computation. The Spark-based solution could

be 2.3x and 1.55x faster than using Hadoop system when

performing KNN and Geographic Mean Point analysis, re-

spectively. Pipeline model computation has significant better

performance on Spark, while little improvement on Hadoop

over the non-pipeline model.

II. RELATED WORK

Apache Hadoop is a big data distributed processing frame-

work implementing the Map-Reduce programming model

[1]. Hadoop includes four modules: Hadoop Common,

HDFS, YARN and Map-Reduce. It is a reliable, fault tolerant

cloud computing framework, so more and more fields start

to use it for processing massive data. In GIS, there are also

some researchers deploying many geospatial analyses on

Hadoop. Chen et al. design a MapReduce-based system,

called MRGIS, for processing data-intensive applications

in GIS [6]. [13] has applied Hadoop and Map-Reduce

technology to GIS and provide performance evaluation to

demonstrate its efficiency. Eldawy et al. [7] introduce a

Hadoop-based system, SpatialHadoop, to perform GIS anal-

ysis, which adopts two-level index to organize the stored

data. [4] shows another Hadoop-based system, Hadoop-GIS,

which is a spatial data warehousing system. [23] implements

some spatial data query analysis on Hadoop to achieve good

performance. [5] uses the Map-Reduce model to solve two

kinds of spatial problems and shows results on scalability

and parallelism effect. In our previous research [20], we

developed a Hadoop and Hbase based system, called Dart, to

perform spatio-temporal analysis. In [20] we also designed

an optimized grid-based geographic median point algorithm

and provided some optimization suggestions when using

Dart.

Apache Spark is a newly emerging distributed open-

source in-memory computing framework [2]. It has lots of

advantages over Hadoop framework, especially on iterative

and interactive operations, fault tolerance and recovery ca-

pability [2, 18, 19]. Spark is not only a big data computing

framework, but also supports stream processing, data fast

query, machine learning and graphic processing[2], which

suits almost all kinds of geospatial analyses. However, Spark

has not been fully investigated for GIS applications. You

et al. [17] conduct a geospatial analysis on Spark, but just

study join query processing and compare the performance

between Spark and Impala framework. Xie et al. [15] try to

query data using R-tree and quad tree algorithms on Spark

framework, and compare their performance. However, none

of these research compare big data computation performance

between Spark and Hadoop frameworks, technically explain

the differences or provide any optimization suggestions on

using Spark for GIS tasks.

III. METHODOLOGY

A. Geographic Mean Point

Geographic mean point calculation is to compute average

latitude and longitude values to form a geographic position

from all locations of one user. In our experiment, we ignore

the projection effect of the mean point, since our dataset only

covers a small area from New York City to Washington D.C.

Equation 1 shows the calculation.

Meanlat =
n∑

i=1

Lati/n

Meanlon =
n∑

i=1

Loni/n

(1)

Meanlat and Meanlon correspond to mean point latitude

and longitude values, respectively. Lati and Loni represent

the latitude and longitude of point i, respectively.

Obtaining a mean point is a simple GIS analysis and the

computation is not complex. The time-consuming parts in

this application are reading all the raw data to the system

and grouping these data based on users id.

In Hadoop, we only need to use single-pass to calculate

the mean points. In the mapper phase, we read the raw un-

preprocessed data and parse them into key value pairs. User

id will be the key and location information, which consists

of latitude and longitude, will be the value. All records with

the same key will be sent to the same reducer. In the reducer

phase, we calculate each users mean point. The algorithm

in Hadoop is shown in Algorithm 1.

In the Spark-based solution, we import raw data to the

cluster memory to create a RDD, and then parse the data.

User id is the key, and location is the value. Next, we call

groupByKey() to classify the data with respect to the user

id then use Equation 1 to calculate the mean point of each

user. numCore is the total number of cores in all executors.

In order to have a better parallel performance and balance

workload, we set partition number to numCore*2 when we

perform groupByKey. Algorithm 2 shows how to implement

it on Spark.

352

Algorithm 1 Mean on Hadoop

function: Map(k,v)

1: newPoint(userId, Lat, Lon) = parse(inputdata)
2: EMIT (newPoint.userId, newPoint.position)

function: Reduce(key,values)

3: (lat, lon, num) = (0.0, 0.0, 0)
4: for each value in values do
5: lat+ = value.lat
6: lon+ = value.lon
7: num+ = 1
8: end for
9: (lat, lon) = (lat/num, lon/num)

10: results = lat+ ”; ” + lon
11: EMIT (key, results)

Algorithm 2 Mean on Spark

function: main

1: points = sc.textF ile(datasetPath).map(Parse())
2: results = points.groupByKey(numCore ∗ 2)

.map(x => (x. 1, calculateMean(x. 2))).collect()

x. 1 represents the key, i.e. user id, and x. 2 means all

location information of one user. Collect is used to convert

the final result from a RDD to an array and send it to the

driver program for displaying.

B. K Nearest Neighbors

K Nearest Neighbors (KNN), a simple but very classic

geospatial analysis, is a method for classifying objects based

on the closest training examples with respect to some metrics

such as distance. In our experiment, we plan to find k points

whose distance to a specific point p are closest within a 60

GB Twitter Dataset. To obtain these points, we need to read

entire dataset, and calculate the distance between the specific

point to all other points. Then we sort all these distance

values in an ascending order and finally get the first number

of k sorted results in the order.

In our experiment, we assign 10 to k and (40, 70) to

be the position of p. We use 60, 120 and 180 GB Twitter

datasets as the input data. In the Hadoop system, we use

two passes to perform this computation. In the first pass,

the mapper is used to read the raw data and parse them then

calculate the distance between point p to all other points.

Next, distance is used as the key and the other points’

latitude and longitude as the value. Since as long as the

reducers exist, we have to do sort after map function in an

ascending order, using distance as the key will improve the

performance. In reducers, all records are sorted, so we just

write first 10 records to the HDFS as the input data for

the second pass. Since we can not ensure the results in one

reducer are the smallest 10 values among all outputs, we

need to do a global sorting. In the second pass, mappers are

used to read data and because the distance is also the key

of the data, after shuffling between the mapper and reducer,

reducer could have a global sorted list of records. Then we

output the first 10 records to finish the computation. The

algorithm in Hadoop is shown in Algorithm 3.

In Spark, since we take advantage of RDD for storing

the data, we can finish all computations in one pass and

parallelize the computing across all executors. We firstly

read the data to memory and parse the data to the correct

location format, then use distance calculation function to

calculate the distance, return distance as the key and point

location as the value. Finally sortByKey function is called

and the first 10 records are output. Algorithm 4 shows the

implementation of KNN on Spark.

Algorithm 3 KNN on Hadoop

function: firstMap(k,v)

1: newPoint(Lat, Lon) = parse(inputdata)
2: distance = calculateDistance(newPoint, specificPoint)
3: EMIT (distance, newPoint.position)

function: firstReduce(key,values)

4: k = 0
5: for each value in values do
6: while k¡10 do
7: EMIT (key, value)
8: k+ = 1
9: end while

10: end for
function: secondMap(k,v)

11: EMIT (k, v)
function: secondReduce(key,values)

12: k = 0
13: for each value in values do
14: while k¡10 do
15: EMIT (key, value)
16: k+ = 1
17: end while
18: end for

Algorithm 4 KNN on Spark

function: main

1: points = sc.textF ile(datasetPath).map(Parse())
2: results = points.map(x =>

(calculateDistance(, specificPoint), (x. 1, x. 2)))
.sortByKey().take(10)

From Algorithm 4 we can see that coding in Spark is very

simple and fast without having any gaps between passes. All

data are stored and computed in the memory. The parameter

” ” in calculateDistance represents all data in each

record. x. 1 and x. 2 mean latitude and longitude values,

respectively.

353

C. Geographic Median Point

A user’s geographic median point is a point that mini-

mizes the total distance to all of his/her points in the dataset.

Usually, to show user’s actual active location, median point

position is more accurate than mean point position, since it

is less influenced by outlier points. The algorithm of cal-

culating the median point is complex and time consuming,

which has lots of iterative operations. In our experiment,

we use two algorithms to calculate the median point. In

the first algorithm, we only use the midpoint as the initial

point. In the second algorithm, we use midpoint as our first

initial point then adopt our designed grid-based median point

algorithm, which uses grids to find a better initial point[20].

Hence, in this paper, we directly deploy these two algorithms

to perform median point computation. Our main idea of

these optimized algorithms is to reduce the cost of finding

a better initial point during the computation without losing

the accuracy.

We only need a single Map-Reduce pass to perform this

analysis in Hadoop. Mapper is used to read all users’ raw

data and parse the data into key-value pairs. In order to group

the data by users, user id is still the key and the location

information is the value. Then in the reducer, based on the

algorithm selection indicator, we calculate the median point

using Algorithm 5.

Our Spark algorithm is shown in Algorithm 6. We read

and parse the input raw data then collect the generated RDD.

Then we parallelize the collected result to make our process-

ing better parallelized. After that, we use mapPartitions to

calculate each user’s median point. Finally we output the

results.

Algorithm 5 MedianPoint on Hadoop

function: Map(k,v)

1: newPoint(userId, Lat, Lon) = parse(inputdata)
2: EMIT (newPoint.userId, newPoint.position)

function: Reduce(key,values)

3: indicator = context.getConfiguration()
.get(”algorithmIndicator”)

4: currentPoint = calculateMidPoint(values)
5: distance = calculateTotalDistance(currentPoint, values

)
6: if (indicator == gridAlgorithm) then
7: currentPoint = updateCurrentPointByGrid

(currentPoint, distance, testStep)
8: end if
9: while (testStep > 0.00000002) do

10: currentPoint = updateCurrentPoint
(currentPoint, distance, testStep)

11: end while
12: EMIT (key, currentPoint.position)

Algorithm 6 MedianPoint on Spark

function: main

1: points = sc.textF ile(datasetPath).map(Parse())
2: tmp = points.groupByKey(numCore ∗ 2)
3: result = tmp.mapPartitions

(getMedianPoint(, algorithmIndicator)).collect()

Algorithm 7 Distribution of MedianPoint on Hadoop

function: firstMap(k,v)

1: newPoint(userId, Lat, Lon) = parse(inputdata)
2: EMIT (newPoint.userId, newPoint.position)

function: firstReduce(key,values)

3: currentPoint =
calculateMedianPointByUsingAlgorithm5

4: EMIT (currentPoint.latitude,
currentPoint.longitude)

function: secondMap(k,v)

5: newPoint(Lat, Lon) = parse(inputdata)
6: id = calculateDistribution(newPoint.position)
7: EMIT (id, 1)

function: secondReduce(key,values)

8: count = 0
9: for each value in values do

10: count+ = value
11: end for
12: EMIT (key, count)

D. Geographic Median Point Distribution

Geographic median point distribution is a very useful

and important geospatial analysis in GIS, since it could

tell us our interested type of Twitter users’ actual spatial

distribution, which can be used for further commercial

or criminal analysis. We perform this computation in two

models: Chain and No-Chain. In the Chain model, users’

median points are unavailable, thus calculation of median

positions from raw data is needed, and then distribution

algorithm is applied to compute the distribution pattern.

The No-Chain model assumes that users’ median points are

available, hence we just need to consequently read these

data to the system then compute distribution pattern. Both

models are used to study multi-pass situation performance

in Hadoop and Spark. For the distribution algorithm, we

implement it in the following way: firstly we create a mesh

on dataset covered area, with 0.01 degree grid length, and

then compute in which grid each median point locates.

In this experiment, we try to analyze active users’ location

patterns from New York to Washington D.C. In the Chain

model, we adopt both of the algorithms demonstrated in

Section III-C to perform the computation.

Algorithm 7 introduces the Chain model analysis. In the

first pass, mapper is used to read and parse the raw data.

Then based on the key, we send all data of the same user

354

to the same reducer. Reducer then calculates users’ median

point positions and writes them to HDFS. In the second pass,

the written data is read into the system by mappers, mappers

then calculate the grid-id that it belongs to and write the key-

value pair intermediate data to HDFS. Here, the key is the

grid-id and the value is 1. In the reducer phase, we count

the number of values in each grid.

In Spark, basically we only add one line of code after the

Algorithm 6, which is shown in Algorithm 8.

Algorithm 8 Distribution of MedianPoint on Spark

function: main

1: points = sc.textF ile(datasetPath).map(Parse())
2: tmp = points.groupByKey(numCore ∗ 2)
3: medianPoint = tmp.mapPartitions

(getMedianPoint(, algorithmIndicator))
4: result = medianPoint.mapPartitions

(checkPointLocation).map(x =>
(x, 1)).reduceByKey(+).collect

Here, we will not show the algorithm of No-Chain model,

since it is just from Step 5 to Step 12 in Algorithm 7 and

the fourth step in Algorithm 8.

IV. EXPERIMENTS AND OPTIMIZATIONS

Our experiments are conducted on an Amazon EC2 clus-

ter, which consists of 11 m3.xlarge nodes, including one

namenode and 10 datanodes. Each m3.xlarge instance has

Intel Xeon E5-2670 v2 (Ivy Bridge) Processors, 4 vCPU, 15

GB memory, and 100 GB magnetic storage, running Centos

6. Our experiments are based on Apache Hadoop 2.4, Spark

1.1.1, and Java 6.

A. Study I: Geospatial Big Data Processing

We use 3 different sizes of Twitter datasets, 60, 120 and

180 GB, to perform our two geospatial analyses, KNN and

Mean. Our purpose is to compare the performance of Spark

and Hadoop on computing spatial operations on real big

datasets.

1) Experiment on Mean: Spark has a better performance

than Hadoop-based solution on computing the geographic

mean point of each user according to Figure 1(a). Our

study indicates that Spark can improve performance up to

34.43% and averagely by 21.45%. In fact, we do not need

to do sorting while processing mean point analysis, but the

Hadoop-based solution involves several sorting operations.

In contrast, this step does not exist in the Spark-based

solution. Moreover, because the dataset is massive, writing

and reading data to disk and shuffling the data to the reducers

may take long time in Hadoop. Thus Spark-based has a

better performance than Hadoop.

(a) Mean (b) KNN

Figure 1. Performance of Mean and KNN on Spark and Hadoop

2) Experiment on KNN: Figure 1(b) shows the time

of performing KNN analysis when k is 10 on Spark and

Hadoop system. It shows that our Spark-based solution has

a much better performance than the Hadoop-based solution.

According to our experiments, KNN on Spark is 2.3x, 1.6x

and 1.8x faster than Hadoop on 60, 120, 180 GB datasets,

respectively. Since the computation is not complicated, we

believe the major reason causes Spark-based is faster than

Hadoop-based is the multi-pass, since massive intermediate

data has been written to disk 3 times in Hadoop-based

solution, while 0 time in Spark-based solution.

B. Study II: Geospatial Data Analysis

In this section, we compute geographic median points and

their distribution of active Twitter users who posted more

than 500 tweets in 3 months within 60 GB Twitter dataset

covering an area from New York City to Washington D.C.

In our experiment dataset, there are 2434 active users, which

is around 0.6% of all users. We are interested in only active

users, who involve a larger amount of raw data and could

be better cases to test our system.

1) Experiment on Geographic Median Point: Figure 2(a)

demonstrates that Spark still outperforms the Hadoop-based

solution on this complex analysis no matter what type of

algorithm we use. Hadoop involves unnecessary sorting

process, and has a large number of writes and reads to

disks. In contrast, Spark takes full advantage of the cluster

resource and performs all tasks in memory. Such kind of jobs

contain considerable number of iterative operations, which

Spark is good at. Our experiments indicate that the Spark-

based solution improves performance by 50.17% compared

to the Hadoop-based solution using no-grid algorithm, and

by 38.18% using grid-based solution.

2) Experiment on Distribution of Median Point: Figure

2(b) indicates that in the Chain model, no matter what

algorithms we use, Spark outperforms Hadoop. Spark can

be 2.12x and 1.85x faster for no-grid algorithm and grid

algorithm, respectively. If we implement No-Chain model,

the Spark-based solution is 2.24x faster than using Hadoop

system, as shown in Figure 2(c).

Figure 3 shows the influence of computing distribution

of median point in pipeline type and non-pipeline type,

since we want to know when only the raw data is available,

355

(a) MedianPoint (b) Distribution(Chain) (c) Distribution(No-
Chain)

Figure 2. Performance of MedianPoint and Distribution of Median Point
on Spark and Hadoop

Figure 3. Performance of Distribution of Median Point in Chain vs No-
Chain

how much the influence it will be if we use separate jobs

with single pass in each (non-pipeline type) instead of

using one job with multi-pass (pipeline type) by using the

same framework. The time of Distribution (non-pipeline)

is the total time that includes the time of calculating

the median point distribution from raw data and the time

of computing the distribution by using No-Chain model.

Figure 3 shows that there is little performance difference

in Hadoop between pipeline type and non-pipeline type

on processing distribution analysis. Results indicate that if

adopting grid algorithm in Hadoop, the pipeline model only

improves performance by 1% compared to non-pipeline. The

performance of pipeline model using no-grid algorithm in

Hadoop is almost the same compared to the non-pipeline

model (the improvement is only 0.2%). In contrast, Spark

pipeline model always outperforms non-pipeline model, and

the improvements are 4.3% and 11% for no-grid algorithm

and grid algorithm, respectively. The experiment shows that

there is no significant difference between pipeline and non-

pipeline computation type in Hadoop, while the pipeline

model has an obvious performance improvement over the

non-pipeline model in Spark. We believe that the primary

reason is all data are stored in RDD. If we use non-pipeline

in Spark, we have to read data from disk twice and write

once, while using pipeline model, data are stored in memory

and we just need to read the raw data from disk once. In

contrast, Hadoop is a kind of disk-based system, no matter

what type of model we use, it has to write the data to disk.

Thus, there is not too much difference between these two

(a) on Hadoop (b) on Spark

Figure 4. Performance of KNN and Mean on Hadoop and Spark with
Different Block Size

models. However, we also notice that the pipeline model

has a little better performance than the non-pipeline model

in Hadoop, because the pipeline model can decrease the

initialization time of the pass. For example, in the second

pass, we do not need to apply for, launch, and initialize the

application master container, but we think the improvement

of the pipeline type performance is limited. If the analysis

is more complicated with more passes and last longer time,

this improvement could be ignorable.

Through our experiments, we notice that our experiment

results are not as fast as what Spark official website ad-

vocates. We believe the reasons are: (1). Our datasets are

still not big enough. Because of small size data sets, Spark

computational capacity cannot be fully demonstrated. If the

datasets are big and computation is more complicated, we

believe the performance will be further improved. (2). We do

not have too many iterative operations or re-use large amount

of medium data. However, our experiment results show that

without catering for preferred operation type, Spark still can

have a higher performance than Hadoop-based solution in

GIS.

C. Optimizations

1) Optimization Suggestions on HDFS: There are several

aspects needing attentions while coding or using Spark.

Firstly, the block size in HDFS is critical since it can

affect the number of partitions in Spark and mappers in

Hadoop. After analyzing and comparing the performance

of different block sizes, we notice that 128 MB block size

in Spark and 256 MB in Hadoop have the best performance

in our experiments. The performance difference caused by

block size usually appears in map phase. Because the total

size of data is fixed and the number of reducers is the

same, the computation time in reducers will not change a

lot in Hadoop. In our experiment, mapper is used to read

data. When processing big datasets, we need multi-wave to

read data. So after reading one block of data, the mapper

container will be released and the application master will be

356

notified in the next heart-beat. Then the application master

will request a new mapper container, wait for reply from the

resource manager, send request to an assigned node manager,

and then launch a new mapper container. After that, we need

to initialize the new container, and read the correct block of

data. If the data is not localized, it has to be fetched from

another node. Hence, bigger block size means less number of

steps. So in Hadoop, the bigger block size, 256 MB, could be

better. However, larger size will degrade the parallelism. On

the contrary, in Spark, all executors will keep running until

the whole job is finished, which is a kind of container reuse

mechanism. After reading a block of data, it immediately

starts to read the next block. Hence reading data does not

affect the time too much. But in each executor, after reading

data, it immediately starts to process the data. Bigger size of

data block in each executor will need longer time to process,

if the computation time grows linearly with the input data,

the block size will not affect performance obviously, like in

Mean Point computation. But if the computation growth is

complex like KNN, the affection will be significant. Figure

4(a) shows results of running KNN and Mean analysis on

Hadoop with different HDFS block. Figure 4(b) shows the

results on Spark.

2) Optimization Suggestions on Data Operations: For

Geospatial operations that involve multiple operations on

each record and especially when the number of record

is large, it is better to use mapPartitions to replace map

to perform operations. Because mapPartitions makes each

partition call the function once, thus the number of calling

is reduced and time for function initialization is shortened.

This advantage becomes even more significant especially

when the number of records is large, the computation is

complex, or lots of objects need to be initialized in each

function. In our experiment, using mapPartitions does not

improve too much performance compared to using map

(only averagely being improved by 4 seconds), because the

computation in each method is not very complex and only

a few objects need to be initialized. However, based on

our experience, mapPartitions sometimes can improve speed

more than 20%. While using mapPartitions, it is better to set

Spark.akka.frameSize with a large value to avoid errors and

improve the performance. In addition, adopting user-defined

serializer to replace JavaSerializer can improve the serial-

ization and data transfer speed by setting Spark.serializer.

Garbage collection (GC) really takes a long time in many

tasks, so if the block size is small, we can assign smaller

space for RDD to decrease the number of GC and its time by

setting Spark.storage.memoryFraction. Similar to Hadoop,

shuffle in Spark also takes a long time. If we have many

files needing to be shuffled, setting Spark.shuffle.consolid be

true can be a good option, since it can decrease the number

of shuffle handlers and files.

3) Optimization Suggestions on Resources: When adopt-

ing Spark to perform geospatial analysis, more attentions

need to be paid on utilizing cluster resource. Because Spark

on Yarn uses a coarse-grained model, no matter whether

a task is running in the executor or not, the executor will

keep the resource until the job is finished. In many cases, if

parallelization is not fully explored, tasks may only run in

some of the executors and waste resources. For example,

when performing geographic median point analysis, it is

good to parallelize the computation by setting partition

numbers in shuffle function (i.e. groupByKey), otherwise it

may produce less partitions using hashPartitioner, or make

workload imbalance.

In the yarn-site.xml, it is better to set

yarn.scheduler.minimum-allocation-mb to a small value,

such as 100, to fully take advantage of the resource, since

memory size of each container is multiple times of the

minimum container memory size. For example, if a node

has 3 cores and 5 GB memory, and the default minimum

container memory size is 1GB, when running 2 executors

and setting 2 GB memory in each executor, only one

container can be observed running in this node and its

memory size is 3 GB. The reason is that there are some

executor memory overheads in each container, so actually

the container size should be a little larger than 2 GB.

However, if the minimum container memory size is 1GB

and container memory size must be multiple times of the

minimum size, then the container memory size has to be 3

GB and only one container could run in this node under

this condition.

V. DISCUSSION

The performance of Spark-based solution outperforms the

Hadoop solution, but we also notice that there are several

disadvantages of using Spark. The first one is that Spark on

YARN uses a coarse-grained model. Of course this model

can improve the performance of Spark when the dataset is

big and computation is complex, since we do not need to

re-apply for new containers. However, if there are more than

one job running at the same time, this kind of model will

waste lots of resource, which may make other jobs delay a

long time or even killed. Secondly, it is hard to debug the

application. Spark uses a lazy operation mechanism, which

will not start to run the operations until an action operation is

called [18], so if the processing is slow, it is hard to detect

which transformation operation is the bottleneck. Finally,

using Spark framework may put more costs on physical

nodes, since it is an in-memory computing platform and

needs larger memory compared to Hadoop cluster.

VI. CONCLUSION AND FUTURE WORK

In this paper, we implement four classic geospatial anal-

yses, KNN, geographic mean point and median point, and

distribution of median point on 60, 120 and 180 GB Twitter

datasets on Hadoop and Spark systems. The experimental

357

results show that the Spark-based solution always outper-

forms the Hadoop-based on these 4 analysis. Pipeline model

computation has significant better performance on Spark,

while little improvement on Hadoop over the non-pipeline

model. We also discuss potential problems in Hadoop and

technical reasons of better performance for Spark. In the

end, we provide several optimization suggestions on using

Spark.

In the future work, we will extend our systems on Hadoop

and Spark to support more GIS computations for large-scale

datasets as well as automated GIS scientific workflows [12].

In addition, we plan to adapt our optimization techniques

on scientific computations on EC2 [8] and Azure [10, 11]

to improve our system’s performance and reduce cost on

public cloud platforms.

ACKNOWLEDGMENT

This work was supported in part by NSF-CAREER-

1622292 and NSFC-61428201.

REFERENCES

[1] Apache hadoop. https://hadoop.apache.org/.

[2] Apache spark. https://spark.apache.org/.

[3] Twitter on wikipedia.

https://en.wikipedia.org/wiki/Twitter.

[4] A. Aji, F. Wang, H. Vo, R. Lee, Q. Liu, X. Zhang, and

J. Saltz. Hadoop-GIS: A high performance spatial data

warehousing system over mapreduce. In Proceedings
of the VLDB Endowment, 2013.

[5] A. Cary, Z. Sun, V. Hristidis, and N. Rishe. Experi-

ences on processing spatial data with mapreduce. In

Proceedings of the 21st International Conference on
Scientific and Statistical Database Management, 2009.

[6] Q. Chen, L. Wang, and Z. Shang. Mrgis: A mapreduce-

enabled high performance workflow system for gis.

In Proceedings of the 2008 Fourth IEEE International
Conference on eScience, 2008.

[7] A. Eldawy and M. Mokbel. SpatialHadoop: towards

flexible and scalable spatial processing using mapre-

duce. In Proceedings of the 2014 SIGMOD, 2014.

[8] H. Huang, L. Wang, B. C. Tak, L. Wang, and C. Tang.

Cap3: A cloud auto-provisioning framework for par-

allel processing using on-demand and spot instances.

In Proceedings of the 2013 IEEE Sixth International
Conference on Cloud Computing, 2013.

[9] J. Lin and D. Ryaboy. Scaling big data mining in-

frastructure: The twitter experience. In ACM SIGKDD
Explorations Newsletter, 2012.

[10] V. Subramanian, H. Ma, L. Wang, E.-J. Lee, and

P. Chen. Rapid 3d seismic source inversion using

windows azure and amazon ec2. In Proceedings of the
2011 IEEE World Congress on Services. IEEE, 2011.

[11] V. Subramanian, L. Wang, E.-J. Lee, and P. Chen.

Rapid processing of synthetic seismograms using win-

dows azure cloud. In Proceedings of the 2nd IEEE
International Conference on Cloud Computing Tech-
nology and Science, 2010.

[12] L. Wang, S. Lu, X. Fei, A. Chebotko, H. V. Bryant,

and J. Ram. Atomicity and provenance support for

pipelined scientific workflows. Journal of Future
Generation Computer Systems, 25(5):568–576, 2009.

[13] Y. Wang and S. Wang. Research and implementation

on spatial data storage and operation based on hadoop

platform. In 2010 Second IITA-GRS International
Conference.

[14] D. Wong and J. Lee. Statistical Analysis and Modeling
of Geographic Information. John Wiley and Sons,

2005.

[15] X. Xie, Z. Xiong, X. Hu, G. Zhou, and J. Ni. On

massive spatial data retrieval based on spark. In Web-
Age Information Management. Springer, 2014.

[16] C. Xu, D. W. Wong, and C. Yang. Evaluating the

geographical awareness of individuals: An exploratory

analysis of twitter data. Cartography and Geographic
Information Science, 2013.

[17] S. You, J. Zhang, and L. Gruenwald. Large-scale

spatial join query processing in cloud. In Data
Engineering Workshops (ICDEW), 2015 31st IEEE
International Conference on. IEEE, 2015.

[18] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,

M. McCauley, M. J. Franklin, S. Shenker, and I. Stoica.

Resilient distributed datasets: A fault-tolerant abstrac-

tion for in-memory cluster computing. In Proceedings
of the 9th USENIX conference on Networked Systems
Design and Implementation, 2012.

[19] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker,

and I. Stoica. Spark: Cluster computing with working

sets. In Proceedings of the 2nd USENIX conference on
Hot topics in cloud computing, 2010.

[20] H. Zhang, Z. Sun, Z. Liu, C. Xu, and L. Wang. Dart:

A geographic information system on hadoop. In Pro-
ceedings of 2015 IEEE 8th International Conference
on Cloud Computing. IEEE, 2015.

[21] H. Zhang, L. Wang, and H. Huang. Smarth: Enabling

multi-pipeline data transfer in hdfs. In Proceedings
of 2014 43rd International Conference on Parallel
Processing. IEEE, 2014.

[22] J. Zhang. Towards personal high-performance geospa-

tial computing (hpc-g): Perspectives and a case study.

In Proceedings of the ACM SIGSPATIAL International
Workshop on High Performance and Distributed Geo-
graphic Information Systems, 2010.

[23] S. Zhang, J. Han, Z. Liu, K. Wang, and S. Feng. Spatial

queries evaluation with mapreduce. In Proceedings of
the 2009 Eighth International Conference on Grid and
Cooperative Computing, 2009.

358

